Diawali dengan soal mudah sederhana meningkat ke soal-soal tipe un.
Soal No. 1
Dua buah matriks A dan B masing-masing berturut-turut sebagai berikut:
Tentukan A − B
Dua buah matriks A dan B masing-masing berturut-turut sebagai berikut:
Tentukan A − B
Pembahasan
Operasi pengurangan matriks:
Soal No. 2
Dari dua buah matriks yang diberikan di bawah ini,
Tentukan 2A + B
Pembahasan
Mengalikan matriks dengan sebuah bilangan kemudian dilanjutkan dengan penjumlahan:
Soal No. 3
Matriks P dan matriks Q sebagai berikut
Tentukan matriks PQ
Pembahasan
Perkalian dua buah matriks
Soal No. 4
Tentukan nilai a + b + x + y dari matriks-matriks berikut ini
Diketahui bahwa P = Q
Operasi pengurangan matriks:
Soal No. 2
Dari dua buah matriks yang diberikan di bawah ini,
Tentukan 2A + B
Pembahasan
Mengalikan matriks dengan sebuah bilangan kemudian dilanjutkan dengan penjumlahan:
Soal No. 3
Matriks P dan matriks Q sebagai berikut
Tentukan matriks PQ
Pembahasan
Perkalian dua buah matriks
Soal No. 4
Tentukan nilai a + b + x + y dari matriks-matriks berikut ini
Diketahui bahwa P = Q
Pembahasan
Kesamaan dua buah matriks, terlihat bahwa
3a = 9 → a = 3
2b = 10 → b = 5
2x = 12 → x = 6
y = 6
y = 2
Kesamaan dua buah matriks, terlihat bahwa
3a = 9 → a = 3
2b = 10 → b = 5
2x = 12 → x = 6
y = 6
y = 2
Sehingga:
a + b + x + y = 3 + 5 + 6 + 2 = 16
Soal No. 5
Tentukan determinan dari matriks A berikut ini
Pembahasan
Menentukan determinan matriks ordo 2 x 2
det A = |A| = ad − bc = (5)(2) − (1)(−3) = 10 + 3 = 13
Soal No. 6
Diberikan sebuah matriks
Tentukan invers dari matriks P
Pembahasan
Invers matriks 2 x 2
Soal No. 7
Tentukan tranpose dari matriks A berikut ini
Pembahasan
Transpose sebuah matriks diperoleh dengan mengubah posisi baris menjadi kolom seperti contoh berikut:
Soal No. 8
a + b + x + y = 3 + 5 + 6 + 2 = 16
Soal No. 5
Tentukan determinan dari matriks A berikut ini
Pembahasan
Menentukan determinan matriks ordo 2 x 2
det A = |A| = ad − bc = (5)(2) − (1)(−3) = 10 + 3 = 13
Soal No. 6
Diberikan sebuah matriks
Tentukan invers dari matriks P
Pembahasan
Invers matriks 2 x 2
Soal No. 7
Tentukan tranpose dari matriks A berikut ini
Pembahasan
Transpose sebuah matriks diperoleh dengan mengubah posisi baris menjadi kolom seperti contoh berikut:
Soal No. 8
Diketahui persamaan matriks |
Nilai a + b + c + d =....
A. − 7
B. − 5
C. 1
D. 3
E. 7
Pembahasan
Jumlahkan dua matriks pada ruas kiri, sementara kalikan dua matriks pada ruas kanan, terakhir gunakan kesamaan antara dua buah matriks untuk mendapatkan nilai yang diminta.
2 + a = −3
a = − 5
4 + b = 1
b = − 3
d − 1 = 4
d = 5
c − 3 = 3
c = 6
Sehingga
A. − 7
B. − 5
C. 1
D. 3
E. 7
Pembahasan
Jumlahkan dua matriks pada ruas kiri, sementara kalikan dua matriks pada ruas kanan, terakhir gunakan kesamaan antara dua buah matriks untuk mendapatkan nilai yang diminta.
2 + a = −3
a = − 5
4 + b = 1
b = − 3
d − 1 = 4
d = 5
c − 3 = 3
c = 6
Sehingga
a + b + c + d = −5 − 3 + 6 + 5 = 3
Soal No. 9
Diketahui matriks
Apabila B − A = Ct = transpos matriks C, maka nilai x .y =....
A. 10
B. 15
C. 20
D. 25
E. 30
(UN 2007)
Pembahasan
Transpos C diperoleh dengan mengubah posisi baris ke kolom, B − A adalah pengurangan matriks B oleh A
Akhirnya, dari kesamaan dua matriks:
y − 4 = 1
y = 5
x + y − 2 = 7
x + 5 − 2 = 7
x + 3 = 7
x = 4
x . y = (4)(5) = 20
Soal No. 10
Soal No. 9
Diketahui matriks
Apabila B − A = Ct = transpos matriks C, maka nilai x .y =....
A. 10
B. 15
C. 20
D. 25
E. 30
(UN 2007)
Pembahasan
Transpos C diperoleh dengan mengubah posisi baris ke kolom, B − A adalah pengurangan matriks B oleh A
Akhirnya, dari kesamaan dua matriks:
y − 4 = 1
y = 5
x + y − 2 = 7
x + 5 − 2 = 7
x + 3 = 7
x = 4
x . y = (4)(5) = 20
Soal No. 10
Jika |
maka x + y =....
A. − 15/4
B. − 9/4
C. 9/4
D. 15/4
E. 21/4
(Soal UMPTN Tahun 2000)
Pembahasan
Masih tentang kesamaan dua buah matriks ditambah tentang materi bentuk pangkat, mulai dari persamaan yang lebih mudah dulu:
3x − 2 = 7
3x = 7 + 2
3x = 9
x = 3
4x + 2y = 8
22(x + 2y) = 23
22x + 4y = 23
2x + 4y = 3
2(3) + 4y = 3
4y = 3 − 6
4y = − 3
y = − 3/4
Sehingga:
x + y = 3 + (− 3/4) = 2 1/4 = 9/4
Soal No. 11
Invers dari matriks A adalah A−1.
A. − 15/4
B. − 9/4
C. 9/4
D. 15/4
E. 21/4
(Soal UMPTN Tahun 2000)
Pembahasan
Masih tentang kesamaan dua buah matriks ditambah tentang materi bentuk pangkat, mulai dari persamaan yang lebih mudah dulu:
3x − 2 = 7
3x = 7 + 2
3x = 9
x = 3
4x + 2y = 8
22(x + 2y) = 23
22x + 4y = 23
2x + 4y = 3
2(3) + 4y = 3
4y = 3 − 6
4y = − 3
y = − 3/4
Sehingga:
x + y = 3 + (− 3/4) = 2 1/4 = 9/4
Soal No. 11
Invers dari matriks A adalah A−1.
Jika |
tentukan matriks (A−1)T
Pembahasan
Invers matriks dan tranpos sebuah matriks.
Invers matriks dan tranpos sebuah matriks.
Misalkan:
Sehingga:
Soal No. 12
Sehingga:
Soal No. 12
Tentukan nilai x agar matrik |
merupakan sebuah matriks yang tidak memiliki invers!
Pembahasan
Matriks yang tidak memiliki invers, disebut matriks singular. Determinan dari matriks singular sama dengan nol.
det P = ad − bc = 0
(2)(x) − (3)(5) = 0
2x − 15 = 0
2x = 15
x = 15/2
Soal No. 13
Pembahasan
Matriks yang tidak memiliki invers, disebut matriks singular. Determinan dari matriks singular sama dengan nol.
det P = ad − bc = 0
(2)(x) − (3)(5) = 0
2x − 15 = 0
2x = 15
x = 15/2
Soal No. 13
Diketahui matriks | , | dan |
Jika A = B, maka a + b + c =....
A. − 7
B. − 5
C. − 1
D. 5
E. 7
(UN Matematika Tahun 2010 P37 Matriks)
Pembahasan
Kesamaan dua matriks:
4a = 12
a = 3
3a = − 3b
−3a = − 3b
−3(3) = − 3b
−9 = − 3b
b = 3
3c = b
3c = 3
c = 1
a + b + c = 3 + ( 3) + ( 1) = 7
Soal No. 14
Diketahui matriks |
memenuhi AX = B, tentukan matriks X
Pembahasan
Jika AX = B, maka untuk mencari X adalah
X = A−1 B
Cari invers matriks A terlebih dahulu, setelah ketemu kalikan dengan matriks B
Catatan:
AX = B maka X = A−1 B XA = B maka X = B A−1 |
Semoga dengan postingan diatas yang berjudul Pembahasan Soal Operasi Matriks Materi SMA Kelas 12 dapat bermanfaat untuk adik adik semuanya yang sedang mencari beberapa refrensi contoh soal yang lengkap dengan pembahasannya, sehingga dapat mempelajari dirumah dengan mudah. Sumber: http://matematikastudycenter.com/
Pembahasan Soal Operasi Matriks Materi SMA Kelas 12
4/
5
Oleh
agus prasetyo